J/ψ in sPHENIX

Sasha Lebedev (ISU)

Overview

Inclusive J/ψ

- The main idea is to apply electron p_T cut 2 GeV/c and look only at high p_T J/ ψ
- Background calculated using the same code as was used for Upsilons, see my presentation on September 6, 2016:

https://indico.bnl.gov/materialDisplay.py?contribId=1&materialId=slides&confId=1926

- Only combinatorial background considered.

B \rightarrow J/ ψ using DCA and secondary displaced vertex (PHG4TrackKalmanFitter)

Expected J/ψ yield

Expected number of J/ ψ in 10B 0-10% central Au+Au collisions

Number of 0-10% central AuAu events	10e+09	10 ²
N _{COLL}	955	- The
$\sigma_{\sf pp}$	40 mb	10 are
$B_{ee} \times \sigma_{J/\psi}$	180 nb [*]	extr
R _{AA} for J/ψ	0.3*	Transverse
Acceptance (PYTHIA)	0.224 (integrated	d over p _T)
eID efficiency	0.9	
Tracking efficiency	100%	
Number of reconstructed J/ψ in acceptance	2.6e+06	
p _T > 2 GeV cut efficiency	1.7% (integrated	over p _T)

^{*} ppg104; Phys. Rev. D85, 092004 (2012)

Simulation details

Use pythia8 to produce single J/ ψ and single J/ ψ coming from B decays. (particle selection by PHHepMCParticleSelectorDecayProductChain)

Do the same for full p+p events with and without forced bbbar production.

Run through full simulation and reconstruction (MAPS+IT+TPC)

Secondary vertex reconstructed using PHG4TrackKalmanFitter

J/ψ mass resolution

For single J/ ψ integrated over p_T mass resolution ~35 MeV

Fit with Crystal Ball function

Expected invariant mass distributions

Background is calculated with the code used for Upsilon background.

Combinatorial background only.

Expected R_{AA} statistical uncertainty

Assuming that p+p uncertainty is negligible.

Maybe we can get a measurement in 4-5 GeV bin, but systematics related to how well we know the background will dominate there.

$$B \rightarrow J/\psi$$

Pythia8 simulation with forced bbbar production and forced decay of B-mesons to J/ψ . J/ψ 's are forced to decay to electrons.

$B \rightarrow J/\psi$ DCA resolution (single J/ψ)

For "single" electrons integrated over p_T DCA resolution is ~24 μ m (assuming that primary vertex will be determined with much better accuracy?)

Energy loss by electrons (low mass tail).

$B \rightarrow J/\psi$ displaced vertex distribution

For single J/ ψ integrated over p_T displaced vertex resolution ~35 μ m assuming that the primary vertex will be determined with much better resolution.

Enhancing B \rightarrow J/ ψ sample and reducing background

To separate J/ ψ coming from B-masons from prompt J/ ψ we can use either DCA distribution unfolding (like PHENIX) or we can use displaced vertex distribution unfolding.

Applying DCA > 85 μ m cut keeps ½ of J/ ψ from B, but kills 93.9% of prompt pairs (rejection factor = 16.3)

Applying secondary vertex > $185\mu m$ cut keeps ½ of J/ ψ from B, but kills 95.7% of prompt pairs (rejection factor = 23.3)

Full p+p events with B \rightarrow J/ ψ

Two approaches (particle $p_T > 1.0 \text{ GeV}$):

- Select electron candidates (E/p>0.5) and calculate displaced vertex for opposite sign pairs (very dark green). Then choose pairs with inv. mass > 2 and < 3.5 GeV
- Run recursive KalmanFitter algorithm ("avr-smoothing") on the whole event (green) Then select vertices with two opposite sign tracks with inv. mass > 2 and < 3.5 GeV

Comparison to p+p background

Same plots with background from Min. Bias p+p events (blue). Background is for opposite sign pairs with particle $p_T > 1 GeV$ (no eID cuts) DCA resolution is same as for single J/ψ

Displaced vertex resolution in p+p

Select opposite sign pairs with particle $p_T > 1$ GeV/c. No PID. Vertex resolution is almost unchanged compared to single J/ψ

Backups

Expected invariant mass plots

Will make finer p_T binning and calculate R_{AA} uncertainty.